Swarm Intelligence Algorithm Based on Competitive Predators with Dynamic Virtual Teams
نویسندگان
چکیده
In our previous work, Fitness Predator Optimizer (FPO) is proposed to avoid premature convergence for multimodal problems. In FPO, all of the particles are seen as predators. Only the competitive, powerful predator that are selected as an elite could achieve the limited opportunity to update. The elite generation with roulette wheel selection could increase individual independence and reduce rapid social collaboration. Experimental results show that FPO is able to provide excellent performance of global exploration and local minima avoidance simultaneously. However, to the higher dimensionality of multimodal problem, the slow convergence speed becomes the bottleneck of FPO. A dynamic team model is utilized in FPO, named DFPO to accelerate the early convergence rate. In this paper, DFPO is more precisely described and its variant, DFPO-r is proposed to improve the performance of DFPO. A method of team size selection is proposed in DFPO-r to increase population diversity. The population diversity is one of the most important factors that determines the performance of the optimization algorithm. A higher degree of population diversity is able to help DFPO-r alleviate a premature convergence. The strategy of selection is to choose team size according to the higher degree of population diversity. Ten well-known multimodal benchmark functions are used to evaluate the solution capability of DFPO and DFPO-r. Six benchmark functions are extensively set to 100 dimensions to investigate the performance of DFPO and DFPO-r compared with LBest PSO, Dolphin Partner Optimization and FPO. Experimental results show that both DFPO and DFPO-r could demonstrate the desirable performance. Furthermore, DFPO-r shows better robustness performance compared with DFPO in experimental study.
منابع مشابه
Optimization of the Lyapunov Based Nonlinear Controller Parameters in a Single-Phase Grid-Connected Inverter
In this paper, optimization of the backstepping controller parameters in a grid-connected single-phase inverter is studied using Imperialist competitive algorithm (ICA), Genetic Algorithm (GA) and Particle swarm optimization (PSO) algorithm. The controller is developed for the system based on state-space averaged model. By selection of a suitable Lyapunov function, stability of the proposed con...
متن کاملClustering and Memory-based Parent-Child Swarm Meta-heuristic Algorithm for Dynamic Optimization
So far, various optimization methods have been proposed, and swarm intelligence algorithms have gathered a lot of attention by academia. However, most of the recent optimization problems in the real world have a dynamic nature. Thus, an optimization algorithm is required to solve the problems in dynamic environments well. In this paper, a novel collective optimization algorithm, namely the Clus...
متن کاملIntroducing a new meta-heuristic algorithm based on See-See Partridge Chicks Optimization to solve dynamic optimization problems
The SSPCO (See-See Particle Chicks Optimization) is a type of swarm intelligence algorithm derived from the behavior of See-See Partridge. Although efficiency of this algorithm has been proven for solving static optimization problems, it has not yet been tested to solve dynamic optimization problems. Due to the nature of NP-Hard dynamic problems, this algorithm alone is not able to solve such o...
متن کاملDetermination of Optimal Parameters for Finite Plates with a Quasi-Square Hole
This paper aims at optimizing the parameters involved in stress analysis of perforated plates, in order to achieve the least amount of stress around the square-shaped holes located in a finite isotropic plate using metaheuristic optimization algorithms. Metaheuristics may be classified into three main classes: evolutionary, physics-based, and swarm intelligence algorithms. This research uses Ge...
متن کاملSolving Fractional Programming Problems based on Swarm Intelligence
This paper presents a new approach to solve Fractional Programming Problems (FPPs) based on two different Swarm Intelligence (SI) algorithms. The two algorithms are: Particle Swarm Optimization, and Firefly Algorithm. The two algorithms are tested using several FPP benchmark examples and two selected industrial applications. The test aims to prove the capability of the SI algorithms to s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Artif. Intell. Soft Comput. Res.
دوره 7 شماره
صفحات -
تاریخ انتشار 2017